Grade 7/8 Math Circles
 February 20, 21, 22, 23, 2023
 Math in Musical Scales - Solutions

Exercise Solutions

Exercise 1

Determine whether or not the following fractions are in simplest form. If they aren't, write them in simplest form.
a) $\frac{2}{3}$
b) $\frac{3}{9}$
c) $\frac{64}{68}$
d) $\frac{5}{10}$
e) $\frac{36}{63}$
f) $\frac{7}{8}$
g) $\frac{12}{36}$
h) $\frac{57}{91}$

Exercise 1 Solution

a) Simplest form
b) $\frac{3}{9}=\frac{3 \times 1}{3 \times 3}=\frac{1}{3}$
c) $\frac{64}{68}=\frac{4 \times 16}{4 \times 17}=\frac{16}{17}$
d) $\frac{5}{10}=\frac{5 \times 1}{5 \times 2}=\frac{1}{2}$
e) $\frac{36}{63}=\frac{9 \times 4}{9 \times 7}=\frac{4}{7}$
f) Simplest form
g) $\frac{12}{36}=\frac{12 \times 1}{12 \times 3}=\frac{1}{3}$
h) Simplest form

Exercise 2

Given that the frequency of the tonic is 300 Hz , find the rest of the notes in the Pythagorean scale.

Exercise 2 Solution

- do: 300 Hz
- re: $300 \mathrm{~Hz} \times \frac{9}{8}=\frac{300 \times 9}{8}=\frac{2700}{8}=337.5 \mathrm{~Hz}$
- mi: $300 \mathrm{~Hz} \times \frac{81}{64}=\frac{300 \times 81}{64}=\frac{24300}{64} \approx 379.69 \mathrm{~Hz}$
- fa: $300 \mathrm{~Hz} \times \frac{4}{3}=\frac{300 \times 4}{3}=\frac{1200}{3}=400 \mathrm{~Hz}$
- so: $300 \mathrm{~Hz} \times \frac{3}{2}=\frac{300 \times 3}{2}=\frac{900}{2}=450 \mathrm{~Hz}$
- la: $300 \mathrm{~Hz} \times \frac{27}{16}=\frac{300 \times 27}{16}=\frac{8100}{16}=506.25 \mathrm{~Hz}$
- ti: $300 \mathrm{~Hz} \times \frac{243}{128}=\frac{300 \times 243}{128}=\frac{72900}{128} \approx 569.53 \mathrm{~Hz}$
- do: $300 \mathrm{~Hz} \times 2=600 \mathrm{~Hz}$

Exercise 3

Given that the frequency of the tonic is 280 Hz , find the rest of the notes in the just intonation scale.

Exercise 3 Solution

- do: 280 Hz
- re: $280 \mathrm{~Hz} \times \frac{9}{8}=\frac{280 \times 9}{8}=\frac{2520}{8}=315 \mathrm{~Hz}$
- mi: $280 \mathrm{~Hz} \times \frac{5}{4}=\frac{280 \times 5}{4}=\frac{1400}{4}=350 \mathrm{~Hz}$
- fa: $280 \mathrm{~Hz} \times \frac{4}{3}=\frac{280 \times 4}{3}=\frac{1120}{3} \approx 373.33 \mathrm{~Hz}$
- so: $280 \mathrm{~Hz} \times \frac{3}{2}=\frac{280 \times 3}{2}=\frac{840}{2}=420 \mathrm{~Hz}$
- la: $280 \mathrm{~Hz} \times \frac{5}{3}=\frac{280 \times 5}{3}=\frac{1400}{3} \approx 466.67 \mathrm{~Hz}$
- ti: $280 \mathrm{~Hz} \times \frac{15}{8}=\frac{280 \times 15}{8}=\frac{4200}{8}=525 \mathrm{~Hz}$
- do: $280 \mathrm{~Hz} \times 2=560 \mathrm{~Hz}$

Exercise 4

Find the missing notes in the E scale from Example F.

Exercise 4 Solution

- 372.5 Hz is greater than $348.8 \mathrm{~Hz}(\mathrm{~F})$ so the second note is $\mathrm{F} \#$
- 419.1 Hz is greater than $392.4 \mathrm{~Hz}(\mathrm{G})$ so the third note is $\mathrm{G} \#$
- 558.7 Hz is greater than $523.2 \mathrm{~Hz}\left(\mathrm{C}_{2}\right)$ so the sixth note is $\mathrm{C} \sharp$
- 628.6 Hz is greater than $294.3 \times 2=588.6 \mathrm{~Hz}\left(\mathrm{D}_{2}\right)$ so the seventh note is $\mathrm{D} \sharp$

The completed scale is $\mathrm{E}, \mathrm{F} \sharp, \mathrm{G} \sharp, \mathrm{A}, \mathrm{B}, \mathrm{C} \sharp, \mathrm{D} \sharp, \mathrm{E}$.

Exercise 5

Find the intervals of the just intonation system.

Exercise 5 Solution

As a reminder, just intonation is as follows:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2

- second: $\frac{9}{8} \div 1=\frac{9}{8}$
- third: $\frac{5}{4} \div \frac{9}{8}=\frac{5}{4} \times \frac{8}{9}=\frac{5 \times 8}{4 \times 9}=\frac{40}{36}=\frac{10}{9}$
- fourth: $\frac{4}{3} \div \frac{5}{4}=\frac{4}{3} \times \frac{4}{5}=\frac{4 \times 4}{3 \times 5}=\frac{16}{15}$
- fifth: $\frac{3}{2} \div \frac{4}{3}=\frac{3}{2} \times \frac{3}{4}=\frac{3 \times 3}{2 \times 4}=\frac{9}{8}$
- sixth: $\frac{5}{3} \div \frac{3}{2}=\frac{5}{3} \times \frac{2}{3}=\frac{5 \times 2}{3 \times 3}=\frac{10}{9}$
- seventh: $\frac{15}{8} \div \frac{5}{3}=\frac{15}{8} \times \frac{3}{5}=\frac{15 \times 3}{8 \times 5}=\frac{45}{40}=\frac{9}{8}$
- eighth: $2 \div \frac{15}{8}=\frac{2}{1} \times \frac{8}{15}=\frac{2 \times 8}{1 \times 15}=\frac{16}{15}$

Thus, the intervals of the just intonation system are:

$$
\left|\frac{9}{8}\right| \frac{10}{9}\left|\frac{16}{15}\right| \frac{9}{8}\left|\frac{10}{9}\right| \frac{9}{8}\left|\frac{16}{15}\right|
$$

Problem Set Solutions

1. Complete the following operations. Reduce all fractions to simplest form. (As a challenge, solve without a calculator).
a) $\frac{24}{25} \div \frac{1}{2}$
b) $\frac{7}{10} \times \frac{3}{16}$
c) $\frac{5}{9} \div \frac{37}{40}$
d) $\frac{1}{3} \times \frac{9}{7}$
e) $\frac{6}{13} \div 2$
f) $\frac{25}{17} \times \frac{12}{5}$

Solution:

a) $\frac{24}{25} \div \frac{1}{2}=\frac{24}{25} \times \frac{2}{1}=\frac{24 \times 2}{25}=\frac{48}{25}$
b) $\frac{7}{10} \times \frac{3}{16}=\frac{7 \times 3}{10 \times 16}=\frac{21}{160}$
c) $\frac{5}{9} \div \frac{37}{40}=\frac{5}{9} \times \frac{40}{37}=\frac{5 \times 40}{9 \times 37}=\frac{200}{333}$
d) $\frac{1}{3} \times \frac{9}{7}=\frac{9}{3 \times 7}=\frac{9}{21}=\frac{3}{7}$
e) $\frac{6}{13} \div 2=\frac{6}{13} \times \frac{1}{2}=\frac{6}{13 \times 2}=\frac{6}{26}=\frac{3}{13}$
f) $\frac{25}{17} \times \frac{12}{5}=\frac{25 \times 12}{17 \times 5}=\frac{300}{85}=\frac{60}{17}$
2. Determine whether the following notes are a tone or a semitone apart. Looking at the keys on a piano may help for this question.
a) C and D
b) B and C
c) $\mathrm{C} \sharp$ and Eb
d) $\mathrm{E} \sharp$ and G
e) $G \sharp$ and $A \sharp$
f) B and $A \sharp$

Solution:

a) Tone
b) Semitone
c) Tone
d) Tone
e) Tone
f) Semitone
3. Find the missing values of the just scale in the table below.

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
150 Hz							300 Hz

Solution:

- re: $150 \mathrm{~Hz} \times \frac{9}{8}=\frac{150 \times 9}{8}=\frac{1350}{8}=168.75 \mathrm{~Hz}$
- mi: $150 \mathrm{~Hz} \times \frac{5}{4}=\frac{150 \times 5}{4}=\frac{750}{4}=187.5 \mathrm{~Hz}$
- fa: $150 \mathrm{~Hz} \times \frac{4}{3}=\frac{150 \times 4}{3}=\frac{600}{3}=200 \mathrm{~Hz}$
- so: $150 \mathrm{~Hz} \times \frac{3}{2}=\frac{150 \times 3}{2}=\frac{450}{2}=225 \mathrm{~Hz}$
- la: $150 \mathrm{~Hz} \times \frac{5}{3}=\frac{150 \times 5}{3}=\frac{750}{3}=250 \mathrm{~Hz}$
- ti: $150 \mathrm{~Hz} \times \frac{15}{8}=\frac{150 \times 15}{8}=\frac{2250}{8}=281.25 \mathrm{~Hz}$

So the completed table should look like this:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
150 Hz	168.75 Hz	187.5 Hz	200 Hz	225 Hz	250 Hz	281.25 Hz	300 Hz

4. Find the missing values of the Pythagorean scale in the table below.

do	re	$\mathbf{m i}$	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
200 Hz							400 Hz

Solution:

- re: $200 \mathrm{~Hz} \times \frac{9}{8}=\frac{200 \times 9}{8}=\frac{1800}{8}=225 \mathrm{~Hz}$
- mi: $200 \mathrm{~Hz} \times \frac{81}{64}=\frac{200 \times 81}{64}=\frac{16200}{64} \approx 253.13 \mathrm{~Hz}$
- fa: $200 \mathrm{~Hz} \times \frac{4}{3}=\frac{200 \times 4}{3}=\frac{800}{3} \approx 266.67 \mathrm{~Hz}$
- so: $200 \mathrm{~Hz} \times \frac{3}{2}=\frac{200 \times 3}{2}=\frac{600}{2}=300 \mathrm{~Hz}$
- la: $200 \mathrm{~Hz} \times \frac{27}{16}=\frac{200 \times 27}{16}=\frac{5400}{16}=337.5 \mathrm{~Hz}$
- ti: $200 \mathrm{~Hz} \times \frac{243}{128}=\frac{200 \times 243}{128}=\frac{48600}{128} \approx 379.69 \mathrm{~Hz}$

So the completed table should look like this:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
200 Hz	225 Hz	253.13 Hz	266.67 Hz	300 Hz	337.5 Hz	379.69 Hz	400 Hz

5. Transpose the following Pythagorean scale with a tonic of Bb to have a tonic of F. Find all of the notes for the new scale.

$\mathbf{B} b$	\mathbf{C}	\mathbf{D}	$\mathbf{E} b$	\mathbf{F}	\mathbf{G}	\mathbf{A}	$\mathbf{B} b$
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
58 Hz							116 Hz

Solution: First, find frequencies for Bb scale:

- C: $58 \mathrm{~Hz} \times \frac{9}{8}=\frac{58 \times 9}{8}=\frac{522}{8}=65.25 \mathrm{~Hz}$
- D: $58 \mathrm{~Hz} \times \frac{81}{64}=\frac{58 \times 81}{64}=\frac{4698}{64} \approx 73.41 \mathrm{~Hz}$
- $\mathrm{Eb}: 58 \mathrm{~Hz} \times \frac{4}{3}=\frac{58 \times 4}{3}=\frac{232}{3} \approx 77.33 \mathrm{~Hz}$
- $\mathrm{F}: 58 \mathrm{~Hz} \times \frac{3}{2}=\frac{58 \times 3}{2}=\frac{174}{2}=87 \mathrm{~Hz}$
- G: $58 \mathrm{~Hz} \times \frac{27}{16}=\frac{58 \times 27}{16}=\frac{1566}{16} \approx 97.88 \mathrm{~Hz}$
- A: $58 \mathrm{~Hz} \times \frac{243}{128}=\frac{58 \times 243}{128}=\frac{14094}{128} \approx 110.11 \mathrm{~Hz}$

The completed $B b$ table looks like this:

$\mathbf{B} b$	\mathbf{C}	\mathbf{D}	$\mathbf{E} b$	\mathbf{F}	\mathbf{G}	\mathbf{A}	$\mathbf{B} b$
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
58 Hz	65.25 Hz	73.41 Hz	77.33 Hz	87 Hz	97.88 Hz	110.11 Hz	116 Hz

Calculate new notes with tonic of $\mathrm{F}(87 \mathrm{~Hz})$:

- re: $87 \mathrm{~Hz} \times \frac{9}{8}=\frac{87 \times 9}{8}=\frac{783}{8} \approx 97.88 \mathrm{~Hz}$
- mi: $87 \mathrm{~Hz} \times \frac{81}{64}=\frac{87 \times 81}{64}=\frac{7047}{64} \approx 110.11 \mathrm{~Hz}$
- fa: $87 \mathrm{~Hz} \times \frac{4}{3}=\frac{87 \times 4}{3}=\frac{348}{3}=116 \mathrm{~Hz}$
- so: $87 \mathrm{~Hz} \times \frac{3}{2}=\frac{87 \times 3}{2}=\frac{261}{2}=130.5 \mathrm{~Hz}$
- la: $87 \mathrm{~Hz} \times \frac{27}{16}=\frac{87 \times 27}{16}=\frac{2349}{16} \approx 146.81 \mathrm{~Hz}$
- ti: $87 \mathrm{~Hz} \times \frac{243}{128}=\frac{87 \times 243}{128}=\frac{21141}{128} \approx 165.16 \mathrm{~Hz}$

We notice that 97.88 Hz is $\mathrm{G}, 110.11 \mathrm{~Hz}$ is $\mathrm{A}, 116 \mathrm{~Hz}$ is $\mathrm{B} b, 130.5 \mathrm{~Hz}=2 \times 65.25 \mathrm{~Hz}$ so 130.5 Hz is C and $146.81 \mathrm{~Hz} \approx 2 \times 73.41 \mathrm{~Hz}$ so 146.81 Hz is D . The only note we are missing is the second last one. From the Pythagorean tuning interval pattern, we know the missing note is a tone above D and a semitone below F. Looking at a piano, we realize that this missing note is E. So the completed F scale looks like this:

\mathbf{F}	\mathbf{G}	\mathbf{A}	$\mathbf{B} b$	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
87 Hz	97.88 Hz	110.11 Hz	116 Hz	130.5 Hz	146.81 Hz	165.16 Hz	116 Hz

6. Determine whether the following scale is in the Pythagorean tuning system or the just intonation system. (Hint: look at the intervals).

do	re	mi	fa	so	la	ti	do
50 Hz	56.25 Hz	62.5 Hz	$66 \frac{2}{3} \mathrm{~Hz}$	75 Hz	$83 \frac{1}{3} \mathrm{~Hz}$	93.75 Hz	100 Hz

Solution: The just intonation intervals are as follows:

$$
\left|\frac{9}{8}\right| \frac{10}{9}\left|\frac{16}{15}\right| \frac{9}{8}\left|\frac{10}{9}\right| \frac{9}{8}\left|\frac{16}{15}\right|
$$

The Pythagorean tuning intervals are as follows:

$$
\left|\frac{9}{8}\right| \frac{9}{8}\left|\frac{256}{243}\right| \frac{9}{8}\left|\frac{9}{8}\right| \frac{9}{8}\left|\frac{256}{243}\right|
$$

Since the seventh is different between the two tuning systems, let's calculate it from the given scale.
$\frac{100}{93.75}=\frac{10000}{9375}=\frac{625 \times 16}{625 \times 15}=\frac{16}{15}$
So the given scale is in the just intonation system.
7. Describe the benefits and drawbacks of Pythagorean tuning and just intonation.

Solution: Benefits of Pythagorean tuning:

- Playable in any key
- Each key has a unique sound
- Has a semitone-tone pattern

Drawbacks of Pythagorea tuning:

- Large numerators and denominators
- Produces wolf intervals in certain keys
- Cannot be repetedly transposed

Benefits of just intonation:

- Has a pure and pleasant sound in some keys
- Each key has a unique sound
- Small numerators and denominators for calculations

Drawbacks of just intonation:

- Sounds "wrong" in some keys
- Does not have a semitone-tone pattern
- Certain keys are unplayable on common instruments

8. If you wanted to transpose a song over and over again, which tuning system would you choose? Why?

Solution: I would choose equal temperament. Pythagorean tuning creates wolf intervals in some keys and just intonation doesn't work for certain keys. I know that equal temperament can be played in all keys so we are able to transpose to any key.

